Enrollment No:	Exam Seat No:
	L'Adin Scat 110.

C.U.SHAH UNIVERSITY Winter Examination-2022

Subject Name: Real Analysis

Subject Code: 5SC02REA1 Branch: M.Sc. (Mathematics)

Semester: 2 Date: 19/09/2022 Time: 11:00 To 02:00 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

- Q-1 Attempt the Following questions (07)
 a) Define: Algebra of sets (02)
 - **b**) Define: F_{σ} set (02)
 - c) If $A, B \subseteq R$ be such that $m^*(B) = 0$ then prove that $m^*(A \cup B) = m^*(A)$. (02)
 - **d**) What is the measure of [2,5)? (01)
- Q-2 Attempt all questions (14)
 - **a)** Let \mathcal{A} be an algebra on X and $\{A_i\} \in \mathcal{A}$ then there exist $\{B_i\} \in \mathcal{A}$ such that (07)
 - i) $\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i$ and ii) $B_i \cap B_j = \phi$, for $i \neq j$.
 - **b)** Prove that outer measure of an interval is its length. (07)

OR

- Q-2 Attempt all questions (14)
 - a) Prove that P is non-measurable set. Where P contains one element from each equivalence classes E_{λ} and $\bigcup E_{\lambda} = X = [0,1)$.
 - **b)** Consider X = R and $A = \{A \in R/\text{either A or A}^c \text{ is countable}\}$ then show that A is a σ (05) -Algebra on R.

Q-3		Attempt all questions	(14)
	a)	If $E_1, E_2,, E_n$ be a finite sequence of measurable sets and they are mutually disjoint	(05)
		then for any $A \subseteq R$, $m^* \left(A \cap \left(\bigcup_{i=1}^n E_i \right) \right) = \sum_{i=1}^n m^* \left(A \cap E_i \right)$.	
	b)	Let ϕ and ψ are simple functions on E which are vanish outside of a set of finite	(05)
		measure then prove that $\int a\phi + b\psi = a\int \phi + b\int \psi$.	
	c)	Give an example of an algebra which is not an σ -Algebra of X and explain. OR	(04)
Q-3		Attempt all questions	(14)
	a)	Let f be a bounded function on a measurable set Ewith $m(E) < \infty$. if $\inf_{\psi \ge f} \int_{E} \psi = \sup_{\phi \le f} \int_{E} \phi$	(05)
		, for all simple functions ϕ and ψ on E then prove that f is a measurable functions on E.	
	b)	If $E_1, E_2,, E_n$ be a finite sequence of measurable sets and they are mutually disjoint	(05)
		then for any $A \subseteq R$, $m^* \left(A \cap \left(\bigcup_{i=1}^n E_i \right) \right) = \sum_{i=1}^n m^* \left(A \cap E_i \right)$.	
	c)	Let E_1 and E_2 be two measurable subsets of R then prove that	(04)
		$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$	
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a)	Explain monotone convergence theorem is false for decreasing function.	(02)
	b)	State Fatou's lemma.	(02)
	c)	State Egoroff's theorem.	(02)
	d)	True/False: A real valued function f is said to be of bounded variation on [a,b] if total	(01)
		variation is finite.	
Q-5		Attempt all questions	(14)
	a)	State and prove Bounded convergence theorem.	(07)
	b)	State and prove Lebesgue dominated convergence theorem.	(07)
		OR	
Q-5		Attempt all questions	(14)
	a)	State and prove monotone convergence theorem.	(07)
	b)	Define convergence in the sense of measure and also prove that there is a	(04)
		subsequence $\{f_{n_k}\}$ of $\{f_n\}$ pointwise converges to f a.e. on E .	
	c)	State Littlewoods's three principles.	(03)

Q-6		Attempt all questions	(14)
	a)	State and prove Fundamental theorem of integral calculus.	(07)
	b)	If f is integrable over E then $ f $ is integrable over E and $\left \int_{E} f \right \le \int_{E} f $.	(05)
	c)	Write Chebychev's inequality.	(02)
		OR	
Q-6		Attempt all Questions	(14)
	a)	F is absolutely continuous function on $[a,b]$ iff F is indefinite integral.	(07)
	b)	<u>.</u> _	(07)
		i) $fg \in BV[a,b]$ and ii) $\frac{f}{g} \in BV[a,b]$, where $g \neq 0$.	

